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1 Generic pipeline examples in PaPy

To illustrate the general use of PaPy as a toolkit for workft®gign, construction, and execution, several
examples of common pipeline patterns (simple f@jms, producgspawr/consumegtc) are included in

Cieslik & Mura 1


mailto:cmura@virginia.edu

Bioinformatics pipelines in PaPy Additional File

the ‘doc/ exanpl es’ directory of the source-code distribution. The followisgbsections present Python
code for two typical scenarios: A generic fgf&in pipeline (8.1), and a workflow that illustrates the
incorporation of theNuBio package (8.2). Both code samples are annotated with descriptive comanent
particularly as regards segments that are specific to PaPiysansage.

1.1 Prototype for a forked pipeline

The following code for this generic example can also be founthe PaPy source agddc/ wor kf | o-
ws/ pi pel i ne. py

#! [ usr/ bi n/ env python
# -x- coding: utf-8 -=-

This file (doc/workfl ows/pipeline.py in the PaPy src) provides a prototype of a
pi peline; use it as a starting-point to construct your own pipelines. The
construction of a pipeline can be split into distinct parts, for severa
reasons. Most inportantly, this makes the |ogic of your code nore nodul ar, as
it detaches the definition of a workflow fromthe actual runtinme (i.e. the rea
data and conputational resources to solve the particular instance of the
problemat hand). Furthernore, this approach sinplifies workflow execution and
record-keepi ng (provenance) by allowing one to group all the necessary el enents
into a single executable script file.

Al steps in the following workflow are as explicit as possible. If you prefer
to use a less flexible (but nore conpact and inplicit) approach, via the API
features, then please refer to the docunentation.

Xrange

fork (linear)
/ \
L R (parallel, signle shared resource)
\ /
join (linear)
|
print

# Part 0: Inport the PaPy infrastructure.

# interface of the API:

from papy inport Plunber, Piper, Wrker

from papy.util.func inmport print_

# NuMap provi des parallel/distributed worker-pool functionality and the
# 'inmports’ wrapper:

fromnumap i nport NuMap, inports

# | oggi ng support:

i mport | ogging

from papy.util.config inmport start_| ogger

start_| ogger(log_to_streanrTrue, |og _to_stream.| evel =l oggi ng. ERROR)

# Part 1. Define user functions
def fork(inbox):

msg = inbox[ 0]

return nsg

@nports([’ socket’, 'os', 'threading])
def who_am i (i nbox):

This function identifies the host process.

return "process: %" % os. getpid()
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def join(inbox):
| eft _branch, right_branch = inbox
return "joined result from% and %" % (left_branch, right_branch)

# Part 2: Define the topol ogy
def pipeline(resource):
# initialize Wrker instances (i.e. wap the functions).
w_fork = Worker (fork)
w_who_am.i = Worker(who_am.i)
w_join = Wrker(join)
# initialize Piper instances (i.e. attach functions to runtine)
p_fork = Piper(w_fork, nanme="Fork’)
L = Piper(wwho_ami, parallel=resource, branch=1)
R = Piper(w_who_ami, parallel=resource, branch=2)
p_join = Piper(w_join, name="Join")
p_print = Piper(print_)
# create the pipeline and connect pipers
wor kf | ow = Pl unmber ()
wor kf | ow. add_pi pe((p_fork, L))
wor kf | ow. add_pi pe((p_fork, R))
wor kf | ow. add_pi pe((L, p_join))
wor kf | ow. add_pi pe((R, p_join))
wor kf | ow. add_pi pe((p_join, p_print))
return workfl ow

# Part 3: Parse the argunents

def options(args):
size = int(args.get(’' --size’, 10))
wor ker _num = int(args.get(’--worker_nuni, 4))
return (size, worker_num

# Part 4: Define the conpute resources
def resources(args):
size, worker_num = args
rsrc = NuMap(wor ker _numrwor ker _num
return rsrc

# Part 5: Create the input data
def data(args):
size, worker_num = args
return xrange(size)

# Part 6: Execute

if _nane__ =="'_muin__:
# get command-line argunents using getopt
i mport sys
from getopt inport getopt
args = dict(getopt(sys.argv[1l:], ', ['size=", 'worker_num='])[0])
# parse options
opts = options(args)
# definie/initialize resources
rsrc = resources(opts)
# define/create input data
inpt = data(opts)
# attach resources to pipeline
wor kfl ow = pi peline(rsrc)
# connect and start pipeline
wor kfl ow. start([inpt])
# run and wait until pipeline is finished
wor kf | ow. run()
wor kf | ow. wai t ()
wor kf | ow. pause()
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wor kf | ow. st op()
print "Runtine: % 2fs" % workflow stats[’ run_tine’]

1.2 A simple, specific workflow using NuBio

The code for the following example can be found in the PaPycsoas toc/ exanpl es/ hel | o_wor k-
flow py”

#! [ usr/ bi n/ env python
# -+- coding: utf-8 -*-

# Step O (inporting the library)

fromnumap i nport NuMap, inports

from papy.core inport Wrker, Piper, Plunber

fromnubio i nport AaSeq, Nt Seq

For optional |ogging functionality:

frompapy.util.config inport start_| ogger

Log to both session streamand file (default name 'PaPy_l og’, to which
results will be appended):

start_l ogger(log_to_file=True, |og_to_streanrTrue)

H* o HHH

< T N N T e R
# Step 1 (witing a worker function)
# clean_Seq takes a raw sequence, creates an array object of ami no- or
# nucleic- acid and replaces certain characters. It can be used as follows
# >>> arr = clean_seq([’ AGA. TA'], type="aa’', fixes=[(".", "-")])
# >>> print arr
def clean_seq(inbox, type, fixes):
seq = i nbox[ 0]
if type == "aa':
arr = AaSeq(seq)
elif type == "nt':
arr = Nt Seq(seq)
el se:

rai se Val ueError ("unknow sequence type %" %type)
for bad, good in fixes:

arr.str(’replace’, bad, good)
return arr

tinestanp take an array object and annotates it with the current data.
the function depends on the ‘‘tine’‘ nodule, attached to the function
definition via the “‘inports'' decorator. It is sinply called:

>>> arr = tinesanp([arr])

>>> print arr.neta[’tinmestanp’]

@nports(['tine’])

def tinmestanp(inbox):

arr = inbox[ 0]

arr.netal[’'tinestanp’] = "% _%_%@6: %: %" %tine.localtinme()[0:6]
return arr

H*HHHH

# Step 2 (wapping function into workers)

# wraps clean_seq and defines a specific sequence type and fixes

cl eaner = Worker(clean_seq, kwargs={'type':’aa’, 'fixes :[(".", "-")1})
# >>> arr = cleaner(['AGA. TA ])

# wraps tinestanp

st anper = Worker (ti nestanp)

# >>> arr = stanper([arr])

e o m o e e e e e e e e e e e e e e e e e e e e e e e e e e e e
# Step 3 (representing conputational resources)
# creates a resource that allows to utilize all |ocal processors

| ocal _conputer = NuMap()
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# Step 4 (creating processing nodes)

# this attaches a single conputational resource to the two processing nodes

# the stanper_node will be tracked i.e. it will store the results of conputation
# in menory.
cl eaner _node
st anper _node

Pi per (cl eaner, parallel=local _conputer)
Pi per (stanper, parallel=local _conputer, track=True)

# Step 5 (constructing a workflow graph)

# we construct a workflow graph add the two processi ng nodes and define the
# connection between them

wor kfl ow = Pl unmber ()

wor kf | ow. add_pi pe((cl eaner _node, stanper_node))

# Step 6 (execute the workflow)
# this starts the workflow, processes data in the "background' and waits
# until all data-itens have been processed.
wor kflow start([['AGA TA', "TG.AA ]])
wor kf | ow. run()
wor kfl ow. wai t ()
results = workflow stats[’ pipers_tracked ][stanper_node][0]
for seq in results.values():
print "Object \"%\" has tine stamp: % " % (seq, seq.neta[’'tinmestanp’])

2 An intricate example: Simulation-based loop refinement

2.1 Overview of this workflow

Using simulation-based refinement of homology model loagparaexample from structural bioinformatics,
this use-case shows that rather intricate workflows can peesged as PaPy pipelines. In particular, this
workflow processes batches of homology models and attermptfihe the loop structuresa successive
stages of energy minimization, equilibration, and themfonolecular dynamics (MD) simulations. As
mentioned in the main text, this workflow was implementedtociddress the specific scientific problem
of loop refinement (there are alternative, potentially dredipproaches; se&)(and references therein for a
recent study in this area), but rather to illustrate the es#d?aPy in constructing and enacting an intricate,
multi-stage, parallelized workflow.

2.2 A walk through the steps in this workflow

This workflow provides a concrete example of several PaRye® concepts, including) Data import
and parsing (the input is a ModBase XML file specifying thatstg homology models){ii) the func-
tion/Worker/Piper relationship (Fig. 1 of the text), including chaining fuiocts into a single composite
Worker; (iii) multiple streams of data-flow (see the branch points in Figf.the main text){iv) implemen-
tation of common workflow patterns, such as fieduce’spawn/consumediom (piper-6, layer-7, piper-8
in Fig. 5); and(v) integration of external software packages, such &sii&= (2) and MMTK (3), into a
pipeline.

This case-study is lengthy and dens@.8&below), but the modular design of the pipeline code makes
it more interpretable, without obscuring the underlyingrkflow logic. This pipeline processes batches
of homology models of the Sm-like protein ‘Hfq’, download&dm a database of comparative structural
models (MODBASE; (4)). The overall workflow (Fig. 5) refines the 3D model strueswvia successive
steps of(i) minimizatioryequilibration of the starting structure for each model|diekd by (i) multiple,
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Figure S1: Backbone G traces are shown for one of
the LSm homology model€6F9wW?2) used in this case-
study; for clarity, theN- andC-termini are labelled, and
arrows denote local strand directionality. Successive
stages of refinement are indicated as blue hues ramped
from dark (initial structure) to medium (minimization,
equilibration) to light (refined model). TH4D/%°P sys-
tems (Fig. 5), comprised of loop residues and neigh-
bors, are indicated by bounding spheres centered on the
characteristig3-turn loops 1 (red), 2 (orange), 3 (yel-
low), 4 (green), and 5 (blue) of the70-residue LSm
fold; these subsystems gmducedn the middle of the
workflow (Fig. 5),spawnshort MD simulations, and
are therconsumedh the ‘conbi ne_| oop_nodel s’
reduction step.

independent MD simulations, run in parallel for each sejgdomp of each model. As shown in the workflow
schematic (Fig. 5), thequilibrate_model processing node consists of chained workers; the first worke
performsin vacuopotential energy minimization, followed by a worker spgirify thermalization and short
dynamics runs at 300 K. One downstream fork of the model #gailon node then callsTRIDE to assign
secondary structure labels to residues (based on backpgnealues), and individual loops are identified
on-the-fly, as contiguous stretches of residues that atkeanei-helical norf3-sheet. In the next set of steps,
each loop of the pre-equilibrated model is then refined, nalfg (the spawned ‘MR pipers in Fig. 5).
Using an algorithm written specifically for this use-casse(thecal | _stri de,def i ne_| oops,cre-

at e_| oop_nodel s steps near lines 110-220 of the code), the equilibratetirsgamodel is partitioned
into (possibly overlapping) spherical regions centere@ath loop (Fig. $ above). Each such region
contains all residues comprising the loop, in addition to@unding residues with which the loop might
interact; this bounding sphere is padded with a 5 A cushisseaby spher e_mar gi n’in the ‘w_cr e-

at e_| oop_nodel s’worker (near line 300). The positions of other residuesté@lito the loop) are fixed
during the short MD simulations. For a model withoops, then loop-refined structures are then merged,
together with the non-loop region, in the final stages of tleekflow (pipers 8 and 9 in Fig. 5); in this last
step, final coordinates are obtained by updating the atoositipns of all loop residues in the equilibrated
model with the configurations from the per-loop MD simulago

2.2.1 Structure of the code

This sample pipeline highlights several features of Palrgt &nd foremost, it demonstrates PaPy’s role as
a toolkit for the design and execution of parallel and distied pipelinesn the context of PythonPaPy
pipelines are expressed as Python scripts that simply paft the papy’ module (seege.g, ‘f r om papy

i nport ...’ statements). Though there are no fixed rules or constraimtsow Python code should be
structured, a modular design leads to cleaner, re-usalke tbat is more easily maintained and interpreted
by others. As is the case with many algorithms, a naturalifeaif workflows is that various aspects of the
code are independent and logically separable — low-levedtion definitions can be insulated from higher-
level pipeline components (specification of pipeline togyl definition of worker-pools), and this level
can be shielded from overall details of workflow executimonitoring/logging. This natural decoupling
between function code, workflow topology, and paramétampute resources guided the design of the
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loop-refinement pipeline: In the code shown &3 the basic functionality.g, computing loop bound-
aries) is defined in the largétage 1 block (lines~25-270), whileStage 2 assembles pipers and workers
into a specific pipeline topology (lines270-360), andstage 3 executes the workflow.

2.2.2 Functions, workers, and pipers

Together with a problem-specific set of parameters (passathaments), the functionality definedStage
1 is used to create callable objec#8drkers) that define the low-level activities of the workflow. Thisveo
level behavior is encapsulated as pipeline-specific werfgge the segment wlorker definitions near lines
270-318), and is combined Btage 2 with parallel worker-pool definitiondNuMap objects) to create pipers
(see thePiper instantiations near lines 320-335). The pipeline topal@mgd therefore pattern of data-flow,
is defined inStage 2 by the interconnections between Piper nodes (2e2 3below).

As previously notedworkers and their wrapped functions can be flexibly defined in PaPy Stage
1 procedures may correspond to nothing more than ordinagy;defined Python function®.g, ‘cr e-
ate_dummy_fi | es’near line 30). Alternatively, external Python librariemncbe usedd.g, the MMTK-
wrapping ctr eat e_nodel ' near line 45), as can third-party, non-Python executafdes, the STRIDE-
based cal | _stri de’ near line 110) or web-accessible d&arvices. The first argument to these func-
tions is a Python tuple, containing the results from all mawy pipes when the function is to be used in a
workflow. The (optionalimports decorator can be used to attach Pythomgor t ’ statements to function
code, thereby allowing the function to be evaluated remgateithon modules required by the imported
function also must be present on the remote host). Finalyaraexample of the strategy of composing
functions to collapse a pipeline segment into a single nodeaaoid unnecessary IPC (Fig. 1), note that the
energy minimization and thermal equilibration operati¢tsfined as separate workers near lines 280 and
290, respectively) are composed into a singterker instance (W_ni ni m ze_equi | i brat e_nodel ")
near line 300; this is also indicated schematically in Fig. 5

2.2.3 Pipes and branches

Data-flow through the pipeline is literally defined by cragtpipes between pairs or sequences of nodes, as
shown by the *add_pi pe’ method invocations near lines 340-360. Note that the mipehas a branch
point after creation of an equilibrated 3D model (piper 3 ig.F5) and two merge points (at pipers 6 and
9). The two mergings correspond (ip creation of spherical loop regions (Fig. 5, green and blactwes
feeding into piper 6) andii) assembly of the final refined model (Fig. 5, gray and blackvasrimto piper

9). In general, a branch might be used to propagate datatlgiteetween functions in different places

of a pipeline, or to carry-out sub-tasks. In the presentJadimement workflow, a sample ‘sub-task’ is
identification of the loops in a protein, based on secondaugtire assignments computed byR&DE.

2.2.4 Parallel processing

Ideally, a workflow would exhibit efficient execution on dse#s of ever-increasing scale (scalability); this
issue becomes especially acute with CPU-intensive metlsod$ as atomistic simulations omicsscale
datasets. Parallel evaluation offers an approach to hmantiirger-scale datasets and, depending on the de-
gree of coupling between individual data-items, may octthialevel of a pipeline node or at the level of the
overall workflow topology. An example of the former (hoded would be an individual MD worker node
executing in multi-threaded manner over many cores, andamgle of the latter (workflow-level) would be
produce' spawrn/consume to distribute calculations. A PaPy workflow can enpnt different varieties of
parallel evaluation at the node- or pipeline-level, inahgdocal/remote and multi-threadéchulti-processor
parallelism (Fig. 1B). Thé&luMap facility supplies PaPy with a unified interface for handlingrker-pools
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(parallel or not), and therefore provides a common mechafes handling parallelism and assigning com-
putational resources to processing nodes. By defiul¥jap instances utilize all locally-available CPUs.
For the loop-refinement workflow, &6cal _conput er’ worker-pool resource is defined (near line 270)
as a 2-workeNuMap instance, using a relatively high value of 100 for theffer’ argument. (Thebuffer
sets an upper-limit on the number of memory-buffered elém@input and pending results], as further
described in the documentation for tNeMap class.) The most computationally-expensive nodes in the
loop-refinement workflow — equilibration (piper-3 in Fig. Ife 324) and MD simulations (pipersrvin
Fig. 5, line 330) — are assigned to the parallel pool.

In conclusion, note that loop-refinement, as a PaPy pipeimparallelizable at several simultaneous
levels: (i) Processing of (independent) input homology models isditiviparallel. (i) A single data-item
(a given homology model traversing the pipeline) is paliabel by partitioning it into discrete 3D spatial
regions, spawning multiple short MD runs centered on eagp io turn. (i) Depending on the capabilities
of the simulation code, numerical integration of MD tra@@s for each such loop can be performed in a
highly-efficient, parallel manner. As illustrated by thegent workflow, parallel processing at lev@)sand
(ii) can be achievedia PaPy.

2.3 Python code for this workflow

The following code was tested on Linux workstations (Fedord Gentoo distributions) with recent stable
releases of Python (2.6.5) and MMTK (2.7.2).

#! [ usr/ bi n/ env python

# Stage 0: Inport PaPy and related (NuMap) infrastructure; see online docs
# for conplete description of the API.

# papy and numap nodul es:

from papy. core inport Wrker, Piper, Plunber

# the parallel NuMap worker-pool functionality and inports w apper:
fromnumap i nport NuMap, inports

# | oggi ng support

from |l ogging inmport getlLogger

frompapy.util.config inmport start_|ogger, get_defaults
start_l ogger(log_to file=False, |log to_strean=True)

# follow ng version is | ess noisy (no logging to strean):
# start_logger(log_to_file=Fal se, |0g_to_streanrFal se)

i mport sys
sys.stderr = open(’/dev/null’, "w)
LOOP_NUM = 10  # maxi num nunber of |oops to consider in honol ogy nodel s

# Stage 1: Define the functions that dictate the | owlevel functionality of the
# wor kf | ow
@nports(['re’, "StringlO])
def create_dummy_files(input_file):
handl e = open(input_file)
mat ch_content = re.conpile(’ <content>(.=*?)</content>. «?UP (.*?)\s+\d, re.DOTALL)
file_strings = match_content. finditer(handle.read())
nodel = 0
whi l e True:
file_content, nodel _nane = file_strings.next().groups()
yield (StringlO StringlQ(file_content), npdel _nane)
nodel += 1
# To do only first 2 nodels (not all of them:
if nodel ==
raise Stoplteration

Cieslik & Mura 8 of 17



Bioinformatics pipelines in PaPy Additional File

@nports([’ MMTK , ' MMIK. PDB', ' MMIK. Protei ns’, ' MMIK. ForceFields’])
def create_nodel (i nbox, forcefield, save_file):

dummy_file, nodel nanme = inbox[ 0]

print 'create_nodel: %’ % nodel _nane

# create the protein

configuration = MMIK. PDB. PDBConfi gurati on(dumry_file)

chains = configuration. createPepti deChai ns()

protein = MVIK. Proteins. Protei n(chai ns)

# create the forcefield

if forcefield == "anber94’:

forcefield = MMTK. For ceFi el ds. Anber 94For ceFi el d()
elif forcefield == "anber99:

forcefield = MMTK. For ceFi el ds. Anber 99For ceFi el d()
# create and fill the universe

uni verse = MMIK. | nfi niteUni ver se( nane=nodel _nane)
uni ver se. set For ceFi el d(forcefield)
uni verse.protein = protein
# ...and, optionally, wite-out the initial coordinates to a PDB file:
if save file:
uni verse.protein.witeToFile('results/%_initial.pdb’ % universe. nane)
return universe

@nports([’ MMTK. Traj ectory’, 'MMIK. M nim zation'])
def mnimze_nodel (i nbox, steps, convergence, save_file, save_log):
uni verse = i nbox[ 0]
print 'mnimze_nodel: %’ % universe. nane
actions =[]
if save_l og:
actions. append(
MMIK. Tr aj ect ory. LogQut put (" resul ts/ % _mni nim zation.log" % uni verse. nane))
m nim zer = MMIK. M ni m zat i on. Conj ugat eGr adi ent M ni m zer (uni verse, actions=acti ons)
m ni m zer (conver gence=conver gence, steps=steps)
if save_file:
uni verse.protein.witeToFile(’'results/%_m ni mzed. pdb’ % uni ver se. nane)
return universe

@nports([’MMTK , ' MMIK. Dynami cs’, 'MMIK. Trajectory’])
def equilibrate_nodel (i nbox, steps, T_start, T_stop, T_step, save_file, save_log):
# T refers to Tenperature (in K)
uni verse = i nbox[ 0]
print ’equilibrate_nodel: %’ % universe.nane
universe.initializeVelocitiesToTenperature(T_start * MMVIK Units.K)
integrator = MMIK Dynanmi cs. Vel oci tyVerl et ntegrator(universe,
delta_t=1. * MMIK Units.fs)
actions = [
# Heat fromT_start Kto T_stop K, applying a tenperature
# change of T_step K/fs; scale velocities at every step.
MMTK. Dynami cs. Heater (T_start * MMIK Units. K,
T_stop * MMIK Units. K,
T_step * MMTK Units. K/ MVIK Units.fs,
0, None, 1),
# Renpve gl obal translation every 50 steps.
MMTK. Dynani cs. Tr ansl at i onRenover (0, None, 50),
# Renpve gl obal rotation every 50 steps.
MMTK. Dynami cs. Rot at i onRenover (0, None, 50)]
if save_l og:
# log output to file:
actions. append( MMTK. Tr aj ect ory. LogQut put (
"results/%_equilibration.log % universe.nane))
# execute it:
i ntegrator(steps=steps, actions=actions)
if save file:
uni verse. protein.witeToFil e(
"results/ % _equilibrated. pdb’ % uni verse. nange)
return universe

@ nports([’ subprocess’])

Cieslik & Mura 90f17



Bioinformatics pipelines in PaPy Additional File

def call_stride(inbox):
# Using the program’Stride’ for |oop determination...

uni verse = i nbox[ 0]
print "call_stride on nodel: %’ % universe. nane
filenane = "results/ %_equilibrated. pdb" % uni verse. nane

process = subprocess. Popen(’stride %' % fil ename, shell=True,
st di n=subpr ocess. Pl PE,
st dout =subpr ocess. PI PE)
# Parsing Stride-specific output (e.g. the follow ng ' ASG business):
output =[]
for line in process. stdout. xreadlines():
if line.startswith(’'ASG):

res_nane = line[5:8] # we use 3

chain_id = line[9]

if chain_id =="-": # stride ' ' ->"'-" renane
chain_id ="~

try:
res_id = int(float(line[10:15]))
res_ic ="’

except Val ueError:
res_id = float(line[10:14])

res_ic = line[14]
ss_code = |ine[24]
phi = float(line[43:49])
psi = float(line[53:59])
asa = float(line[62:69])

out put. append((res_id, ss_code))
# output[(chain_id, (res_nanme, res_id, res_ic))] =
# (ss_code, phi, psi, asa)
if not output:
# this propably neans a Cal pha only chain has been supplied
rai se RuntineError
return output

def define_loops(inbox, mn_size, max_gaps):
print ’define | oops’
stride_results = inbox[O0]
loops =[]
new = True
for res_id, ss_code in stride_results:
if ss_codein ("E, "H):
new = True
conti nue
el se:
if new
| oops. append([])
new = Fal se
| oops[-1]. append(res_id)
return | oops

@nports([’MMTK , " MMIK. Proteins’, 'MMIK PDB', '0s’])
def create_|l oop_nodel s(i nbox, |oop_num sphere_margin, save file):
# This function does much of the heavy-lifting that is specific to this
# pipeline (i.e., it creates the |oop nodels...).
| oops, universe = inbox
print 'create | oop nodels: %’ % universe.nane, |oops
resi dues = universe. protein.residues()
| oop_nodel s =[]
try:
for i, loop in enunerate(loops):
# Determ ne which residues belong to a | oop, grouping themas an
# MMIK ' Col | ection’:
| oop_res = MMIK. Col | ecti ons. Col | ection()
for res_id in |oop:
| oop_res. addObj ect(residues[res_id - 1])
# Determ ne a boundi ng sphere for the residues:
bs = | oop_res. boundi ngSphere()
# select all residues in protein within the sphere plus margin
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| oop_sphere = residues. sel ect Shel | (bs. center, bs.radius + sphere_margin)
# Determ ne the offset of the | oop

of fset_protein = loop[0] - 1

of fset_loop = list(loop_sphere).index(residues[offset_protein])

#### Create new uni verse

# save the sphere around the loop as a new file

| oop_name = "%_| oop¥%s" % (uni verse.nane, i)

loop_file = "results/ % _equilibrated. pdb’ % | oop_nane

pdb_file = MMIK. PDB. PDBQut put Fi | e(l oop_file)

pdb_file.wite(l oop_sphere)

pdb_file.close()

# load the new file as if it was a proper chain (the |loop is proper)
# MMTK wites termnal forns of residues

configuration = MVIK. PDB. PDBConf i gurati on(l oop_file)

chain = MMTK. Prot ei ns. Pepti deChai n(confi guration. pepti de_chai ns[ 0],

#n_term nus=(of fset_protein == 0),
n_t erm nus=l oop_sphere[ 0] == residues[0],
c_term nus=l oop_sphere[-1] == residues[-1])

protein = MMIK. Prot ei ns. Prot ei n(chain)
| oop_uni verse = MMIK. I nfi ni t eUni ver se( nane=l oop_nane)
| oop_uni ver se. set ForceFi el d(uni verse. forcefield())
| oop_uni verse.protein = protein
| oop_residues = | oop_uni verse. protein.residues()
# now fix all atons which are not the initial |oop
# sel ect real |oop residues
| eft _residues = | oop_residues[0: of fset | oop]
ri ght_residues = | oop_residues[offset_|oop + | en(loop):]
#print 'loop: %' % (i + 1,)
#print 'residues in loop: %' %/list(residues[offset_protein:offset_protein + [ en(loop)])
#print 'residues in shell: %" %]Iist(loop_sphere)
#print 'residues to be fixed: %' % (left_residues + right_residues)
for residue in left_residues + right_residues:
for atomin residue.atonlist():
atom fixed = True
| oop_nodel s. append( (| oop_uni verse, (offset_|oop, offset_protein, len(loop))))
if not save_file:
os. unlink(loop_file)
except Exception, e:

print i, loop, list(loop_sphere), e

raise
print 'created | oop nodels: %’ % oop_nodels
for i in xrange(loop_num- |en(loop_nodels)):

| oop_nodel s. append( None)
return | oop_nodel s

@nports([’ MMIK , " MMIK. Dynami cs’, 'MMITK Trajectory’])
def nd_l oop_nodel (i nbox, steps, tenp, save file, save_trajectory, save_log):
# The followi ng is for produce/ spawn/consune-rel ated paddi ng:
if inbox[0] is None:
return None
| oop_uni verse = inbox[0][0]
print 'md of |oop nodel: %’ % oop_universe. nane
actions =[]
if save_l og:
actions. append( MITK. Tr aj ect ory. LogQut put (' resul ts/ %_refinenment.log" %\
| oop_uni ver se. nane))
if save_trajectory:
traj = MMIK Trajectory. Traj ectory(l oop_universe, "%.nc" %/ oop_universe.nanme, "w')
# Wite every second step to the trajectory file.
actions. append( MITK. Traj ectory. Traj ectoryQutput(traj, \
("time", "energy", "thernodynanmic", "configuration"),
0, None, 2))

| oop_universe.initializeVelocitiesToTenperature(tenp * MVIK Units.K)
integrator = MMIK. Dynani cs. Vel oci tyVerl etlntegrator(loop_universe, delta_t=1. * MMIK Units.fs)
integrator(steps=steps, actions=actions)
if save_trajectory:
traj.close()
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if save file:
| oop_uni verse. protein.witeToFile('results/ %_refined. pdb’ %l oop_uni verse. nane)
return inbox[ 0]

def conbi ne_| oop_nodel s(i nboxes):
print ’collect |oop nodels nodel’
| oop_universes_offsets = [i[0] for i in inboxes if i[0] is not None]
return | oop_universes_offsets

@nports(['itertools’])
def nake_refined_nodel (i nbox, save_file):

conbined, initial = inbox
print 'make refined nodel: %’ %initial.nane
residues = initial.protein[0].residues() # residues in the first peptide chain

for |l oop_universe, (offset_|oop, offset_protein, len_loop) in conbined:
initial _residues = residues[offset_protein:offset_protein + | en_| oop]
refined_residues = | oop_universe.protein[0].residues()[offset_| oop:offset_|oop + | en_|loop]
for ir, rr initertools.izip(initial_residues, refined_residues):
for ia, rainitertools.izip(ir.atonList(), rr.atonList()):
ia.setPosition(ra.position())
if save_file:
initial.protein.witeToFile('results/ % _refined. pdb’ % initial.nane)

# Stage 2: Define the workflow s Workers and Pipers
def pipeline():
| ocal _conput er = NuMap(wor ker _nun¥2, buffer=100)
pi pes = Pl unber ()
# initialize Wrker instances (i.e. wap the functions)...
w_create_nodel = Wrker(create_nodel, kwargs={
"forcefield : 'anber99’,
"save_file :True
9]
# 100 steps of minimzation found to be enough for convergence:
w_nmi ni m ze_nodel = Worker(minimze_nodel, kwargs={
"steps’: 150,
" convergence’ : 1. Oe- 4,
"save_l og’ : True,
"save_file :True
9]
w_equi | i brate_nodel = Wrker(equilibrate_nodel, kwargs={
"steps’: 250,
"T_start’:50., # K
"T_stop’:300., # K
"T_step’:0.5, # K
"save_l og’ : True,
"save_file :True

)
# Conposite worker:
w_m nimze_equilibrate_nodel = Worker((w_m nimze_nodel, w_equilibrate_nodel))
w call _stride = Worker(call _stride)
w_define_|l oops = Worker (define_l oops, kwargs={
"mn_size :7,
" max_gaps’ : 2
)
w_create_| oop_nodel s = Wrker(create_|l oop_nodel s, kwargs={
"sphere_margin' :0.5, # nm
"1 oop_num : LOOP_NUM
"save_file :True
b
# 50000 steps (= 50 ps dynami cs) at 300 K
w_nd_| oop_nodel = Worker (nmd_| oop_nodel , kwar gs={
" steps’ : 50000,
"tenp’ : 300, # K
"save_file' :True,
"save_trajectory’ : Fal se,
"save_l og' : True
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})
w_conbi ne_| oop_nodel s = Wr ker (conbi ne_| oop_nodel s)
w_nmake_refined_nodel = VWrker(make_refined_nodel, kwargs={
"save_file :True
3]
# initialize Piper instances (i.e. attach functions to runtine)
p_create_nodel = Piper(w_create_nodel, debug=True)
# p_m nim ze_nodel = Piper(w_mnimze_nodel, parallel=local _conputer,
# debug=Tr ue)
p_equilibrate_nodel = Piper(w_m nimze_equilibrate_nodel

paral | el =l ocal _conput er, debug=True)
P call _stride = Piper(w_call_stride, debug=True)
p_define_l oops = Piper(w_define_l oops, debug=True)
p_create_| oop_nodel s = Piper(w_create_| oop_nodel s,

debug=Fal se, produce=LOOP_NUM
p_nd_| oop_nodel = Piper(w_nd_| oop_nodel, debug=True

paral | el =l ocal _conputer, spawn=LOOP_NUM
p_conbi ne_| oop_nodel s = Pi per (w_conbi ne_| oop_nodel s, debug=True
consune=LO0P_NUM

p_make_refined_nodel = Piper(w_nmake_refined_nodel, debug=True)

# Create the pipeline and connect pipers

# Central pipeline (pipers1->2->3->6 ->1layer-7 ->8->9->101in
# Figure 5 of the manuscript; ---{6 -> layer-7 -> 8}--- is the produce/
# spawn/ consune part of the workflow):
pi pes. add_pi pe((

p_creat e_nodel,

#p_m ni m ze_nodel

p_equi | i brat e_nodel,

p_create_| oop_nodel s,

p_nd_| oop_nodel

p_conbi ne_I| oop_nodel s

p_maeke_refi ned_node

))
# The ' Stride’ branch of the pipeline (pipers 4, 5 in the manuscript)
pi pes. add_pi pe((

p_equi |l i brate_nodel,

P_call _stride

p_define_l oops,

p_create_| oop_nodel s

))
# A’ short-circuit’ of the pipeline, junping frompiper 3 --> 9 (i.e.
# no | oop refinenment, just general equilibration):
pi pes. add_pi pe((

p_equi l i brate_nodel,

p_maeke_refi ned_node

))

return pipes

# Stage 3: Execute the pipeline

if

_nane__ =="'__min__
pi pes = pipeline()
pi pes.start([create_dummy_files(’ data/hfq_nodels.xm’)])
pi pes.run()
pi pes.wait()
pi pes. pause()
pi pes. stop()
print pipes.stats
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3 Some further notes on PaPy

3.1 Platform-independence and installation

The PaPy codebase and its auxiliary toolkits (NuMap, NuBieje written in CPython (version 2.6), which
is the standarttefault, cross-platform implementation of Python. In mtiéhsame way as PyMOL or other
Python-based software packages, PaPy derives its platfatependence from the facts tifgtPython itself

is platform-independent ar{d) PaPy is written in pure Pythoné., no special tricks, customizations, add-on
modules, or other dependencies were introduced beyoncefivgidn of the core Python language). Thus,
although PaPy was developed and tested on several varidntsua (Ubuntu, Gentoo, Fedora, Arch), the
software can in principle be used on any Python-capabléoptat(Unix/Linux, Mac, Windows operating
systems); assuming the root cause was PaPy (and not Pylabed), we would be happy to address any
incompatibilites discovered by users on non-Linux platfsr

Detailed installation scenarios — ranging from simple toaated — are provided in the PaPy manual,
including step-by-step instructions for three common kiwlistributions (Gentoo, Ubuntu, Fedora). PaPy
is most easily obtained and installeich the Python Package Index (PyPl), usingttiptools’ and the simple
command-line invocationeasy_i nstal |l papy’. The PaPy manual also describes a more advanced
installation scenario, using the Python ‘virtual enviramts’ facility in order to install PaPy into an insulated
environment, rather than system-wide.

In terms of platform-independence and more advanced usa&gRy, it is worth noting that direct com-
munication between pipers (to avoid interprocess comnatioic overhead) comes at the cost of platform-
independence, as the operating system must properly duiy@ochosen transmission mechanism. For
instance, communication between processes on a singleviaoknix pipes is necessarily restricted to
Unix/Linux systems. This stems from an intrinsic, well-known sipaint in software engineering: platform—
(in)dependence and advanced functionality are featurassoftware system that generally counteract, and
therefore limit, one another. PaPy provides platform-paiwent alternatives for any such platform-specific
feature (seeg.g, Table 3 of the main text for alternatives to Unix pipes).

3.2 An additional note on the Dagger and Plumber classes

PaPy’sDagger and Plumber classes are core components (Table 2 of the main text) thatcaceptually
quite closely related, but that also subtly differ in ternfidooth low-level (software) implementation and
user-exposed functionality. BriefliplJumber objects can be viewed as spedaigger objects with extended
functionality: A specifiagger instance defines a PaPy pipelimerkflow in terms of connections between
nodes Piper objects), but exactly the same workflowe( same nodes, same topology of interconnections
between nodes) can also be constructedRisraber object, with the benefit that tlumber class endows
the pipeline object with methods for user interaction. Redlifrom PaPy’s even lower-leveDictGraph’
class (a dictionary-based data structure for represeatinitrary graphs), thBagger class provides the ba-
sic methods for adding, deleting, and connecting Pipeairtss and ‘pipes’ (edges that links two specific
Piper nodes). Th@lumber is a subclass of th®agger class that inherits methods frobegger objects
and can be used asDmgger, but that also extends the functionality of thagger class by adding meth-
ods for higher-level (run-time) workflow manipulation amderaction -e.g, loading/saving workflows or
starting/stopping'pausing a pipeline. (As detailed in the API, these methodsdafined with intuitively
obvious names, such asst op() )

More specific descriptions of the low-level definitions of thagger andPlumber classes can be found
in the PaPy manual (pgs 18-21). Bablagger andPlumber are classes within the higher-levedpy.core
module, and a comparison of their API entries (see Manuadals the subtle differences in the properties
and capabilities of these two classes. Finally, to conlyréllastrate the differences between tbagger
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andPlumber classes, we also provide a toy pipeline in tdec¢/ exanpl es’ directory of the source-code
distribution, with the same directed acyclic graple.( same pipeline) implemented as eithebagger
(‘hel I o_dagger . py’) instance or aPlumber instance (hel | o_pl unber. py’). An example of a
more complexPlumber-instantiated workflow is the aboved 8 above) MD loop-refinement pipeline.

3.3 PaPy in the context of cloud computing

It should, in principle, be feasible to deploy PaPy workflowscloud-computing environments without
any modifications to the current PaPy codebase. This is becait the level of PaPy, compute resources
are highly abstracted (aauMap objects) such that a pipeline can be executed using any coafign of
resources — local desktops, remote workstations, or a mixtereof. As described in the text, PaPy employs
RPyC to distribute a pipeline across networked computensu@h RPyC is not officially ‘advertised’ as a
tool for cloud computing, it is meant as ‘library for remote procedure calls, clustering and dibtited-
computing’ (See the RPyC homepage hatp://rpyc.wikidot.com). Indeed, RPyC'’s basic goal of providing
“remote machines as if they were local resouig@sp://www.ibm.com/developerworks/linux/library/l-rpyc) —i.e.,
virtualizing resources — can be considered as cloud comgpte terminology is still somewhat fuzzy and
non-standardized). In terms of PaPy and its relationshiRRyC, we note that the cloud should be readily
accessible by employing a Python-aware service providen as PiCloud Kitp://www.picloud.com). The
PiCloud service essentially offers a high-level wrappeait tses Amazon Web Servicdstastic Compute
Cloud (EC2) as the underlying compute resource. PiCloud supp$iess with a Python library ¢foud’) for
seamless integration with another code-basg, (@ user's PaPy-enabled workflow). Under such a scheme,
PaPy pipelines would be rendered cloud-compatible by simmpborting the tloud’ module and using it to
dispatch the PaPy workflow, as in the following code snippet:

def worker_function(inbox, param:

# ordinary definition of PaPy worker function...
def picloud_function():

# makes sonet hi ng using i nbox
cl oud. cal | (pi cl oud_f uncti on)

Similarly, PaPy workflows should also be cloud-compatibiéhvether service providerse(g, the lower-
level EC2 itself), without any necessary modifications t@yaA key consideration would be that PaPy
assumes data are transmitted acrostahbleinternet connectiong(g, on LANSs, such as in academic labs
or a collection of workstations in a department) withoutweaak time-outs, firewall blocks, intermittency
problems.etc In this regard, we note that PiCloud assurehigtily robust computing environménwith
“99.9% availability (see the PiCloud website).

4 A brief, comparative overview of PaPy and K NIME

Although a complete analysis of the similarities and déferes between PaPy and the many existing WMS
(and WMS-related) software packages lies beyond the sdajpésaeport, we note that currently available
WMS programs (free and commercial) have been recentlyweddgsee main text); for instance, Tiwari &
Sekhar’s treatmenbj, which emphasizes workflow suites from a biosciences petsy@, includes useful
summaries of workflow solutions and workflow-compatibledkparty software (existing programs that are
readily integrated as nodes in different workflow suites} idtroduced in théackgroundsection of our
main text, workflow solutions can be categorized and classiiased upon several different criteria — their
feature sets and scope of functionality, target applicatiomains, graphicalersusscript-based workflow
composition,etc From a user perspective, a most basic distinction is inrttended purpogscope of the
workflow software, with many WMS systems serving as alluisate, highly-integrated suites with high-
level feature sets (‘heavyweight’ solutions). In contrdgihtweight’ solutions (ibraries, toolkits) provide
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neither as extensive a set of functionality (at least notodtthe-box) nor visual environments for workflow
composition and enactment, but they do offer the benefitseofga(i) quite flexible and applicable in a
variety of problem domaingii) more easily mastered by new users, @i more transparent in operation,
so performance can be more readily optimized and troubtgsigpcan be more easily pursued. Thus, with
scientific workflow solutions it is not the case that “one diteall” (6), and different approaches — heavy-
weight suites, lightweight libraries — are more naturallijted to different purposes. Whereas PaPy belongs
to the class of lightweight toolkits for workflow/pipelin@wstruction (of which there are not many available
packages), KiIME is an example of a comparably heavyweight solution, oriyinaspired by needs arising

in machine learning and data-mining workflow3.(KNIME and PaPy differ in rather fundamental ways —in
terms of their intended purposes and scope, their feattseas®l their low-level software implementations.

KNIME, which is written in Java and implemented as an Eclipse piu@), is a feature-rich, all-encom-
passing workflow/pipelining engine that emphasizes a gcaphpproach to workflow creation and execu-
tion. In the words of its authorg), KNIME is “a modular data analysis environmérhat was ‘designed
as a teaching, research and collaboration platférnfPaPy, in contrast, serves far more modest purposes:
Written in Python using functional programming paradigiPaPy provides a much lower-level, lightweight
toolkit. Users can flexibly employ PaPy, together with thsim data-analysis and data-processing code
(Python or otherwise), in order to distribute calculatitotsally and/or remotely, improve their data-handling
and provenance (have a record of the exact data-procesgielinp), and so on (see main text). Perhaps
most important in practical terms, PaPy can be learned g adeady familiar with basic programming (at
the level of bioinformatic scripting) with relatively mimial effort; starting with the examples we provide,
such users can begin creating distributed data-procepgieines within a day, and can easily adapt their
processing pipelines for subsequent projects. Startitlg ma prior experience with workflow editors and
environments, a greater time investment may be requireduicin users to reach the same level of mastery
with a heavyweight, all-encompassing suite such &ERNA or KNIME. Thus, considered in terms of
the usual trade-offs between functionalisgopée’simplicity, both types of systems — lightweight (PaPy) and
heavyweight (KNIME, TAVERNA, etc) — exhibit relative strengths and weaknesses, and can hedias
complementary approaches that serve somewhat differepbpes.

Beyond major differences in scope and feature-set, PaPheadyweight WMS suites such asnK
IME differ at other levels too. In terms of low-level softwarepi®mentation, PaPy andN{ME employ
fundamentally different execution models: Whereas PaRlesd'pipers’) process continuous streams of
data-items (see text), each discrete node invamM& workflow processes an entire ‘chunk’ of data before
forwarding the resultant data to successive (downstreaugs8). In addition, whereas PaPy treats inter-
mediate data as serialized Python objects (which can beaailyi complex, so long as they are valid data
structures), KIIME wraps all inter-node data . as they traverse the data-flow) as custayvalue (table-
like) data structures. KIME and PaPy also differ substantially in their approach taitisting pipelines
for execution across a network of computers (see text foyBapproach), with much recent effort having
been devoted to the development of &IKE ‘Grid Engine’ for distributed processin@). Finally, because
both KNIME and PaPy ultimately treat the problem of data-processiimg@spipeline approach, they share
certain similarities in terms of load-balancing and perfance tuning. For instance, the factors influencing
the value to which PaPy'stride parameter is set (namely, the memgspeed-up trade-off) are mirrored in
the fact that & suitable balance between the size and the number of chisnksportant in KNIME too (8).
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